Public Safety LTE & 5G Network Infrastructure a $2.3 Billion Opportunity, Says SNS Telecom & IT
Author : Radio China    Time : 2022-11-01    Source : www.radiochina.info
share:

SNS Telecom & IT's latest research report indicates that annual investments in public safety LTE and 5G network infrastructure – for fully dedicated, hybrid government-commercial and secure MVNO/MOCN-based networks – will exceed $2.3 Billion by the end of 2025.


With the commercial availability of 3GPP-standards compliant MCX (Mission-Critical PTT, Video & Data), HPUE (High-Power User Equipment), IOPS (Isolated Operation for Public Safety) and other critical communications features, LTE and 5G NR (New Radio) networks are increasingly gaining recognition as an all-inclusive public safety communications platform for the delivery of real-time video, high-resolution imagery, multimedia messaging, mobile office/field data applications, location services and mapping, situational awareness, unmanned asset control and other broadband capabilities, as well as MCPTT (Mission-Critical PTT) voice and narrowband data services provided by traditional LMR (Land Mobile Radio) systems. Through ongoing refinements of additional standards – specifically 5G MBS (5G Multicast-Broadcast Services), 5G NR sidelink for off-network D2D (Device-to-Device) communications, NTN (Non-Terrestrial Network) integration, and support for lower 5G NR bandwidths – 3GPP networks are eventually expected to be in a position to fully replace legacy LMR systems by the mid-to-late 2020s. National public safety communications authorities in multiple countries have already expressed a willingness to complete their planned narrowband to broadband transitions within the second half of the 2020 decade.
 
A myriad of fully dedicated, hybrid government-commercial and secure MVNO/MOCN-based public safety LTE and 5G-ready networks are operational or in the process of being rolled out throughout the globe. In addition to the high-profile FirstNet (First Responder Network), South Korea’s Safe-Net (National Disaster Safety Communications Network) and Britain’s ESN (Emergency Services Network) nationwide public safety broadband projects, many additional national-level programs are making considerable headway in moving from field trials to wider scale deployments – most notably, France's RRF (Radio Network of the Future), Spain's SIRDEE mission-critical broadband network, Finland's VIRVE 2.0 broadband service, Sweden's Rakel G2 secure broadband system and Hungary's EDR 2.0/3.0 broadband network. Nationwide initiatives in the pre-operational phase include but are not limited to Switzerland's MSK (Secure Mobile Broadband Communications) system, Norway's NGN (Next-Generation Nødnett), Germany's planned hybrid broadband network for BOS (German Public Safety Organizations), Japan's PS-LTE (Public Safety LTE) project, Australia's PSMB (Public Safety Mobile Broadband) program and Canada's national PSBN (Public Safety Broadband Network).


Other operational and planned deployments range from the Halton-Peel region PSBN in Canada's Ontario province, China's city and district-wide Band 45 (1.4 GHz) LTE networks for police forces, Royal Thai Police’s Band 26 (800 MHz) LTE network, Qatar MOI (Ministry of Interior), ROP (Royal Oman Police) and Nedaa's mission-critical LTE networks in the oil-rich GCC (Gulf Cooperation Council) region, Brazil's state-wide Band 28 (700 MHz) networks for both civil and military police agencies, Barbados' Band 14 (700 MHz) LTE-based connectivity service platform, and Zambia's 400 MHz broadband trunking system to local and regional-level private LTE networks for first responders in markets as diverse as Laos, Indonesia, the Philippines, Pakistan, Lebanon, Egypt, Kenya, Ghana, Cote D'Ivoire, Cameroon, Mali, Madagascar, Mauritius, Canary Islands, Spain, Italy, Turkey, Serbia, Argentina, Colombia, Venezuela, Bolivia, Ecuador and Trinidad & Tobago, as well as multi-domain critical communications broadband networks such as MRC's (Mobile Radio Center) LTE-based advanced MCA digital radio system in Japan, and secure MVNO platforms in Mexico, Belgium, the Netherlands, Slovenia, Estonia and several other countries.


Even though critical public safety-related 5G NR capabilities defined in the 3GPP's Release 17 specifications are yet to be commercialized, public safety agencies have already begun experimenting with 5G for applications that can benefit from the technology's high-bandwidth and low-latency characteristics. For example, the Lishui Municipal Emergency Management Bureau is using private 5G slicing over China Mobile's network, portable cell sites and rapidly deployable communications vehicles as part of a disaster management and visualization system. In neighboring Taiwan, the Hsinchu City Fire Department is using an emergency response vehicle that can be rapidly deployed to disaster zones to establish high-bandwidth, low-latency emergency communications by means of a satellite-backhauled private 5G network based on Open RAN standards.


In addition, first responder agencies in Germany, Japan and several other markets are beginning to utilize mid-band and mmWave (Millimeter Wave) spectrum available for local area licensing to deploy portable and small-scale 5G NPNs (Non-Public Networks) to support applications such as UHD (Ultra-High Definition) video surveillance and control of unmanned firefighting vehicles, reconnaissance robots and drones. In the near future, we also expect to see rollouts of localized 5G NR systems for incident scene management and related use cases, potentially using up to 50 MHz of Band n79 spectrum in the 4.9 GHz frequency range (4,940-4,990 MHz), which has been designated for public safety use in multiple countries including but not limited to the United States, Canada, Australia, Malaysia and Qatar.


SNS Telecom & IT estimates that annual investments in public safety LTE and 5G infrastructure will reach nearly $1.6 Billion by the end of 2022, driven by both new build-outs and the expansion of existing dedicated, hybrid government-commercial and secure MVNO/MOCN networks. Complemented by a rapidly expanding ecosystem of public safety-grade LTE/5G devices, the market will further grow at a CAGR of approximately 13% between 2022 and 2025, eventually accounting for more than $2.3 Billion by the end of 2025. Despite the positive outlook, a number of significant challenges continue to plague the market. The most noticeable pain point is the lack of a D2D communications capability.


The ProSe (Proximity Services) chipset ecosystem has failed to materialize in the LTE era due to limited support from chipmakers and terminal OEMs. However, the 5G NR sidelink interface offers a clean slate opportunity to introduce direct mode, D2D communications for public safety broadband users, as well as coverage expansion in both on-network and off-network scenarios using UE-to-network and UE-to-UE relays respectively. Another barrier impeding the market is the non-availability of cost-optimized COTS (Commercial Off-the-Shelf) RAN equipment and terminals that support operation in certain frequency bands such as Band 68 (698-703 MHz / 753-758 MHz), which has been allocated for PPDR (Public Protection & Disaster Relief) broadband systems in multiple European countries.


The “Public Safety LTE & 5G Market: 2022 – 2030 – Opportunities, Challenges, Strategies & Forecasts” report presents an in-depth assessment of the public safety LTE and 5G market, including the value chain, market drivers, barriers to uptake, enabling technologies, operational models, application scenarios, key trends, future roadmap, standardization, spectrum availability/allocation, regulatory landscape, case studies, ecosystem player profiles and strategies. The report also presents global and regional market size forecasts from 2022 till 2030, covering public safety LTE/5G infrastructure, terminal equipment, applications, systems integration and management solutions, as well as subscriptions and service revenue.


The report comes with an associated Excel datasheet suite covering quantitative data from all numeric forecasts presented in the report, as well as a list and associated details of over 1,150 global public safety LTE/5G engagements – as of Q4’2022.


The key findings of the report include:

  • SNS Telecom & IT estimates that annual investments in public safety LTE and 5G infrastructure will reach nearly $1.6 Billion by the end of 2022, driven by both new build-outs and the expansion of existing dedicated, hybrid government-commercial and secure MVNO/MOCN networks. Complemented by a rapidly expanding ecosystem of public safety-grade LTE/5G devices, the market will further grow at a CAGR of approximately 13% between 2022 and 2025, eventually accounting for more than $2.3 Billion by the end of 2025.
    In addition to the high-profile FirstNet, South Korea’s Safe-Net and Britain’s ESN nationwide public safety broadband projects, many additional national-level programs are making considerable headway in moving from field trials to wider scale deployments – most notably, France's RRF, Spain's SIRDEE mission-critical broadband network, Finland's VIRVE 2.0 broadband service, Sweden's Rakel G2 secure broadband system and Hungary's EDR 2.0/3.0 broadband network.

  • Other operational and planned deployments include but are not limited to the Halton-Peel region PSBN in Canada's Ontario province, China's city and district-wide Band 45 (1.4 GHz) LTE networks for police forces, Royal Thai Police’s Band 26 (800 MHz) LTE network, Qatar MOI (Ministry of Interior), ROP (Royal Oman Police) and Nedaa's mission-critical LTE networks in the oil-rich GCC region, Brazil's state-wide Band 28 (700 MHz) networks for both civil and military police agencies, Barbados' Band 14 (700 MHz) LTE-based connectivity service platform, and Zambia's 400 MHz broadband trunking system.

  • Production-grade deployments of 3GPP standards-compliant MCX services – beginning with MCPTT – are continuing to accelerate over both commercial and public safety broadband networks. Early adopters range from Safe-Net, FirstNet and ESN to mobile operators such as Verizon, Southern Linc, Telus, SFR, KPN, Swisscom, Telia, Føroya Tele and STC (Saudi Telecom Company).

  • Even though critical public safety-related 5G NR capabilities defined in the 3GPP's Release 17 specifications are yet to be commercialized, public safety agencies have already begun experimenting with 5G for applications that can benefit from the technology's high-bandwidth and low-latency characteristics. For example, the Lishui Municipal Emergency Management Bureau is using a 5G-enabled closed-loop system for integrated emergency visualization and natural disaster management.

  • As 5G implementations become well-established in the 2020s, MCX services in high-density environments, real-time UHD video transmission through coordinated fleets of drones, 5G-connected autonomous police robots, smart ambulances, AR (Augmented Reality) firefighting helmets and other sophisticated public safety broadband applications will become a common sight.

  • Over the last two years, COWs (Cells-on-Wheels), COLTs (Cells-on-Light Trucks) and other deployable LTE network assets have played a pivotal role in facilitating mission-critical communications, real-time transmission of video footage, and improved situational awareness for incident command and emergency response needs – for instance, the mobilization of FirstNet deployables during the wildfire seasons of 2021 and 2022 in the United States.
    5G NR-equipped portable network systems are also beginning to emerge. For example, Taiwan's Hsinchu City Fire Department is using an emergency response vehicle – which features a satellite-backhauled private 5G network based on Open RAN standards – to establish high-bandwidth, low-latency emergency communications in disaster zones. Between 2022 and 2025, SNS Telecom & IT expects cumulative spending on deployable assets for public safety broadband to exceed $700 Million.

  • Although much of the public safety spectrum debate is centered around low-band frequencies in the sub-1 GHz range, a number of PPDR stakeholders have started eyeing up mmWave spectrum reservation to be able to support advanced use cases in the coming years. For example, the Hungarian Ministry of Interior has specifically requested access to a 200 MHz block of Band n258 (26 GHz) spectrum for future 5G applications.

  • In addition, first responder agencies in Germany, Japan and several other markets are beginning to utilize mid-band and mmWave spectrum available for local area licensing to deploy portable and small-scale 5G NPNs (Non-Public Networks) to support applications such as UHD video surveillance and control of unmanned firefighting vehicles, reconnaissance robots and drones.

  • In the near future, we also expect to see rollouts of localized 5G NR systems for incident scene management and related use cases, potentially using up to 50 MHz of Band n79 spectrum in the 4.9 GHz frequency range (4,940-4,990 MHz), which has been designated for public safety use in multiple countries including but not limited to the United States, Canada, Australia, Malaysia and Qatar.

  • The ProSe chipset ecosystem has failed to materialize in the LTE era due to limited support from chipmakers and terminal OEMs. However, the 5G NR sidelink interface offers a clean slate opportunity to introduce direct mode, D2D communications for public safety broadband users, as well as coverage expansion in both on-network and off-network scenarios using UE-to-network and UE-to-UE relays respectively.


Another barrier impeding the market is the non-availability of cost-optimized COTS RAN equipment and terminals that support operation in certain frequency bands such as Band 68 (698-703 MHz / 753-758 MHz), which has been allocated for PPDR broadband systems in multiple European countries.
The report will be of value to current and future potential investors into the public safety LTE and 5G market, as well as LTE/5G equipment suppliers, public safety and government agencies, critical communications service providers, mobile operators, MVNOs and other ecosystem players who wish to broaden their knowledge of the ecosystem.


NEWSLETTER
Stay updated on the latest developments within Mission/business critical communications ecosystem. Sign up for our newsletter by registering your e-mail address.